报告时间:2021年12月7日上午9:30-11:30

报告地点:suncitygroup太阳城一楼会议室

邀请人:李雅湘


学术报告1

报告题目:Bilipschitz mappings and quasihyperbolic mappings in real Banach spaces

报告人:湖南师范大学王仙桃教授

报告人简介:王仙桃,教授、博士生导师。本科毕业于湖南师范大学;硕士、博士毕业于湖南大学,1999年任湖南大学教授,2012年任湖南省首批二级教授,教育部新世纪优秀人才,湖南省学科带头人。湖南师范大学的湖南省十二五重点学科数学、中央专项计划项目数学、湖南省首届普通高校科技创新团队、湖南省普通高校教学团队的主持人。曾任湖南师范大学数学与计算机学院的副院长。研究领域为Klein群与拟共形映射、调和映射。主持完成多项国家自然科学基金;解决了发表在国际数学最权威刊物《Acta.Math.》上悬而未决达三十多年的问题,在十几个国家的数学权威刊物发表论文80多篇;是德国《数学文摘》评论员;多次应邀到芬兰、印度、日本等国讲学与合作研究。2000年,他率先在国内高校开展本科数学分析课程的双语教学,他是国家级双语教学示范课程的主持人。

摘要:Suppose that G and G0 are domains in real Banach spaces with dimension at least 2, and f : G → G0 is a homeomorphism. The aim of this paper is to prove the validity of the implications: f is M-bilipschitz ⇒ f is locally M-bilipschitz ⇒ f is M-QH ⇒ f is locally M-QH, and the invalidity of their opposite implications, i.e., f is locally M-QH ; f is M-QH ; f is locally Mbilipschitz ; f is M-bilipschitz. Among these results, the relationship f is locally M-QH ; f is M-QH gives a negative answer to one of the open problems raised by Vaisala in 1999.


学术报告2

报告题目:Quasiconformal mapping, Gromov hyperbolicity and Gehring-Hayman inequality

报告人:湖南师范大学黄曼子教授

报告人简介:黄曼子,教授,博士生导师,基础数学,单复变函数论,研究领域:拟共形映射和几何函数论。主持四项国家自然科学基金、一项省教育厅优秀青年基金;2017获湖南省杰出青年基金;2019年获国家优秀青年基金。近年来,主要针对复分析中的拟共形映射领域内被大家所关注的一些公开问题进行研究,已解决拟共形映射创始人Vaisala的相关公开问题和猜测7个,部分研究实现了有限维空间到无限维空间的突破。在《Adv.Math.》、《Math.Ann.》、《Israel.J.Math.》、《Ann. Acad. Fenn.Math.》、《Math.Scand.》和《Science in China》等SCI刊物发表论文20多篇。湖南省青年骨干教师,一直担任本科生的复变函数、高等数学等教学。

摘要:In this talk, we discuss the geomeytric properties of Gromov hyperbolic John domains in Banach sapces. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is the cigar condition of the quasihyperbolic geodesic. The third is the Gehring-Hayman property of the quasihyperbolic geodesic. Also, the implication from the separation property to the Gehring-Hayman inequality is also discussed. At last, we get that every Gromov hyperbolic John domain in Banach spaces is inner uniform, which give an partial answer to an open problem proposed by Vaisala in 2004.


学术报告3

报告题目:Pommenrenke’s theorem on Gromov hyperbolic domains

报告人:佛山科技学院周青山博士

报告人简介:周青山,佛山科学技术学院讲师,毕业于汕头大学。研究兴趣为拟共形映射与度量空间上的分析。主持国家自然科学基金1项,省级基金2项。目前在《Isearal J. Math.》, 《Stud. Math.》, 《J.Geom. Anal.》, 《Proc. Amer. Math. Soc.》, 《C. R. Math. Acad. Sci. Paris》, 《Ann. Acad. Sci. Fenn. Math.》等期刊发表多篇论文。

摘要:We establish a version of a classical theorem of Pommerenke, which is a diameter version of the Gehring-Hayman inequality on Gromov hyperbolic domains of $\mathbb{R}^n$. Two applications are given. Firstly, we generalize Ostrowski's Faltensatz to quasihyperbolic geodesics of Gromov hyperbolic domains. Secondly, we prove that unbounded uniform domains can be characterized in the terms of Gromov hyperbolicity and a naturally quasisymmetric correspondence on the boundary, where the Gromov boundary is equipped with a Hamenstadt metric (defined by using a Busemann function). This is a joint work with Antti Rasila and Tiantian Guan.